Patent Foramen Ovale-Induced Platypnea-Orthodeoxia Syndrome ...



bmpr2 mutation pulmonary hypertension :: Article Creator

Pulmonary Hypertension Directory

Pulmonary hypertension is high blood pressure in the arteries leading from the heart to the lungs. Pulmonary hypertension is a different condition than ordinary high blood pressure (hypertension). Many different conditions can cause pulmonary hypertension, including congestive heart failure, blood clots in the lungs, HIV infection, and more. In most patients, pulmonary hypertension has an identifiable cause. Although there's no cure, treatments can reduce the symptoms of primary pulmonary hypertension, including shortness of breath. Follow the links below to find WebMD's comprehensive coverage about pulmonary hypertension, what it looks like, how to treat it, and much more.

Medical Reference View AllFeatures News Archive View All

Extracellular Control Of TGFβ Signalling In Vascular Development And Disease

Massague, J. & Gomis, R. R. The logic of TGFβ signaling. FEBS Lett. 580, 2811–2820 (2006).

Article  CAS  PubMed  Google Scholar 

Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

Article  CAS  PubMed  Google Scholar 

Blobe, G. C., Schiemann, W. P. & Lodish, H. F. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342, 1350–1358 (2000).

Article  CAS  PubMed  Google Scholar 

Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224 (2003).

Article  CAS  PubMed  Google Scholar 

Robinson, P. N. Et al. The molecular genetics of Marfan syndrome and related disorders. J. Med. Genet. 43, 769–787 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grainger, D. J. TGF-β and atherosclerosis in man. Cardiovasc. Res. 74, 213–222 (2007).

Article  CAS  PubMed  Google Scholar 

Ruiz-Ortega, M., Rodriguez-Vita, J., Sanchez-Lopez, E., Carvajal, G. & Egido, J. TGF-β signaling in vascular fibrosis. Cardiovasc. Res. 74, 196–206 (2007).

Article  CAS  PubMed  Google Scholar 

Bierie, B. & Moses, H. L. TGF-β and cancer. Cytokine Growth Factor Rev. 17, 29–40 (2006).

Article  CAS  PubMed  Google Scholar 

Dubois, C. M., Laprise, M. H., Blanchette, F., Gentry, L. E. & Leduc, R. Processing of transforming growth factor β1 precursor by human furin convertase. J. Biol. Chem. 270, 10618–10624 (1995).

Article  CAS  PubMed  Google Scholar 

Beck, S. Et al. Extraembryonic proteases regulate Nodal signalling during gastrulation. Nature Cell Biol. 4, 981–985 (2002).

Article  CAS  PubMed  Google Scholar 

Kanzaki, T. Et al. TGF-β1 binding protein: a component of the large latent complex of TGF-β1 with multiple repeat sequences. Cell 61, 1051–1061 (1990).

Article  CAS  PubMed  Google Scholar 

Saharinen, J., Taipale, J. & Keski-Oja, J. Association of the small latent transforming growth factor-β with an eight cysteine repeat of its binding protein LTBP-1. EMBO J. 15, 245–253 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dallas, S. L. Et al. Characterization and autoregulation of latent transforming growth factor β (TGF β) complexes in osteoblast-like cell lines. Production of a latent complex lacking the latent TGF β-binding protein. J. Biol. Chem. 269, 6815–6821 (1994).

CAS  PubMed  Google Scholar 

Saharinen, J. & Keski-Oja, J. Specific sequence motif of 8-Cys repeats of TGF-β binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-β. Mol. Biol. Cell 11, 2691–2704 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isogai, Z. Et al. Latent transforming growth factor β -binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J. Biol. Chem. 278, 2750–2757 (2003).

Article  CAS  PubMed  Google Scholar 

Nunes, I., Gleizes, P. E., Metz, C. N. & Rifkin, D. B. Latent transforming growth factor-β binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-β. J. Cell Biol. 136, 1151–1163 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flaumenhaft, R. Et al. Role of the latent TGF-β binding protein in the activation of latent TGF-β by co-cultures of endothelial and smooth muscle cells. J. Cell Biol. 120, 995–1002 (1993).

Article  CAS  PubMed  Google Scholar 

Rifkin, D. B. Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. J. Biol. Chem. 280, 7409–7412 (2005).

Article  CAS  PubMed  Google Scholar 

Dabovic, B. Et al. Bone abnormalities in latent TGF-[β] binding protein (Ltbp)-3-null mice indicate a role for Ltbp-3 in modulating TGF-β bioavailability. J. Cell Biol. 156, 227–232 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sterner-Kock, A. Et al. Disruption of the gene encoding the latent transforming growth factor-β binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev. 16, 2264–2273 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhry, S. S. Et al. Fibrillin-1 regulates the bioavailability of TGFβ1. J. Cell Biol. 176, 355–367 (2007). An internal proteolytic fragment of fibrillin-1 is shown to regulate the bioavailability of TGFβ by inducing the release of the large latent complex bound to microfibrils.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge, G. & Greenspan, D. S. BMP1 controls TGFβ1 activation via cleavage of latent TGFβ-binding protein. J. Cell Biol. 175, 111–120 (2006). Bone morphogenetic protein-1 (BMP1)-like metalloprotease is shown to cleave large latent TGFβ binding protein 1 (LTBP1) at two specific sites, thereby liberating the large latent TGFβ complex (LLC) from the extracellular matrix (ECM).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pappano, W. N., Steiglitz, B. M., Scott, I. C., Keene, D. R. & Greenspan, D. S. Use of Bmp1/Tll1 doubly homozygous null mice and proteomics to identify and validate in vivo substrates of bone morphogenetic protein 1/tolloid-like metalloproteinases. Mol. Cell Biol. 23, 4428–4438 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crawford, S. E. Et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159–1170 (1998).

Article  CAS  PubMed  Google Scholar 

Sheppard, D. Integrin-mediated activation of latent transforming growth factor β. Cancer Metastasis Rev. 24, 395–402 (2005).

Article  CAS  PubMed  Google Scholar 

Yang, Z. Et al. Absence of integrin-mediated TGFβ1 activation in vivo recapitulates the phenotype of TGFβ1-null mice. J. Cell Biol. 176, 787–793 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mu, D. Et al. The integrin avβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1. J. Cell Biol. 157, 493–507 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fontana, L. Et al. Fibronectin is required for integrin alphavβ6-mediated activation of latent TGF-β complexes containing LTBP-1. FASEB J. 19, 1798–1808 (2005).

Article  CAS  PubMed  Google Scholar 

Zhu, J. Et al. β8 integrins are required for vascular morphogenesis in mouse embryos. Development 129, 2891–2903 (2002).

CAS  PubMed  Google Scholar 

Bader, B. L., Rayburn, H., Crowley, D. & Hynes, R. O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95, 507–519 (1998).

Article  CAS  PubMed  Google Scholar 

Goumans, M. J. Et al. Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J. 21, 1743–1753 (2002).

Article  CAS  Google Scholar 

Massague, J., Cheifetz, S., Boyd, F. T. & Andres, J. L. TGF-β receptors and TGF-β binding proteoglycans: recent progress in identifying their functional properties. Ann. N. Y. Acad. Sci. 593, 59–72 (1990).

Article  CAS  PubMed  Google Scholar 

Lebrin, F., Deckers, M., Bertolino, P. & ten Dijke, P. TGF-β receptor function in the endothelium. Cardiovasc. Res. 65, 599–608 (2005).

Article  CAS  PubMed  Google Scholar 

Goumans, M. J. Et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ /ALK5 signaling. Mol. Cell 12, 817–828 (2003).

Article  CAS  PubMed  Google Scholar 

Sankar, S., Mahooti-Brooks, N., Centrella, M., McCarthy, T. L. & Madri, J. A. Expression of transforming growth factor type III receptor in vascular endothelial cells increases their responsiveness to transforming growth factor β 2. J. Biol. Chem. 270, 13567–13572 (1995).

Article  CAS  PubMed  Google Scholar 

Lopez-Casillas, F., Payne, H. M., Andres, J. L. & Massague, J. Betaglycan can act as a dual modulator of TGF-β access to signaling receptors: mapping of ligand binding and GAG attachment sites. J. Cell Biol. 124, 557–568 (1994).

Article  CAS  PubMed  Google Scholar 

Lebrin, F. Et al. Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO J. 23, 4018–4028 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanco, F. J. Et al. Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-β receptor complex. J. Cell Physiol. 204, 574–584 (2005).

Article  CAS  PubMed  Google Scholar 

Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev. Mol. Cell Biol. 8, 464–478 (2007). Excellent review on the molecular mechanisms that underlie the formation and function of blood and lymphatic vessels.

Article  CAS  Google Scholar 

Goumans, M. J. & Mummery, C. Functional analysis of the TGFβ receptor/Smad pathway through gene ablation in mice. Int. J. Dev. Biol. 44, 253–265 2000).

CAS  PubMed  Google Scholar 

Akhurst, R. J., Lehnert, S. A., Faissner, A. & Duffie, E. TGF β in murine morphogenetic processes: the early embryo and cardiogenesis. Development 108, 645–656 (1990).

CAS  PubMed  Google Scholar 

Bartram, U. Et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-β2-knockout mice. Circulation 103, 2745–2752 (2001).

Article  CAS  PubMed  Google Scholar 

Kaartinen, V. Et al. Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial-mesenchymal interaction. Nature Genet. 11, 415–421 (1995).

Article  CAS  PubMed  Google Scholar 

Tang, Y. Et al. Epistatic interactions between modifier genes confer strain-specific redundancy for Tgfb1 in developmental angiogenesis. Genomics 85, 60–70 (2005).

Article  CAS  PubMed  Google Scholar 

Deckers, M. M. Et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143, 1545–1553 (2002).

Article  CAS  PubMed  Google Scholar 

Vinals, F. & Pouyssegur, J. Transforming growth factor β1 (TGF-β1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-a signaling. Mol. Cell Biol. 21, 7218–7230 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, J., Wang, Q., Fei, T., Han, J. D. & Chen, Y. G. MCP-1 mediates TGF-β -induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood 109, 987–994 (2007).

Article  CAS  PubMed  Google Scholar 

Ferrari, G. Et al. VEGF, a prosurvival factor, acts in concert with TGF-β1 to induce endothelial cell apoptosis. Proc. Natl Acad. Sci. USA 103, 17260–17265 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, X. Et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J. 18, 1280–1291 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jadrich, J. L., O'Connor, M. B. & Coucouvanis, E. The TGF β activated kinase TAK1 regulates vascular development in vivo. Development 133, 1529–1541 (2006).

Article  CAS  PubMed  Google Scholar 

Roman, B. L. Et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129, 3009–3019 (2002).

CAS  PubMed  Google Scholar 

Hirschi, K. K., Burt, J. M., Hirschi, K. D. & Dai, C. Gap junction communication mediates transforming growth factor-β activation and endothelial-induced mural cell differentiation. Circ. Res. 93, 429–437 (2003).

Article  CAS  PubMed  Google Scholar 

Carvalho, R. L. Et al. Defective paracrine signalling by TGFβ in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development 131, 6237–6247 (2004).

Article  CAS  PubMed  Google Scholar 

Kumar, M. S. & Owens, G. K. Combinatorial control of smooth muscle-specific gene expression. Arterioscler. Thromb. Vasc. Biol. 23, 737–747 (2003).

Article  CAS  PubMed  Google Scholar 

Carvalho, R. Et al. Compensatory mechanisms activated during vasculogenesis in mice by TGFβ-receptor deletion. J. Cell Sci. (in the press).

Jiao, K. Et al. Tgfβ signaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development 133, 4585–4593 (2006).

Article  CAS  PubMed  Google Scholar 

Seki, T., Hong, K. H. & Oh, S. P. Nonoverlapping expression patterns of ALK1 and ALK5 reveal distinct roles of each receptor in vascular development. Lab. Invest. 86, 116–129 (2006).

Article  CAS  PubMed  Google Scholar 

Harradine, K. A. & Akhurst, R. J. Mutations of TGFβ signaling molecules in human disease. Ann. Med. 38, 403–414 (2006).

Article  CAS  PubMed  Google Scholar 

McAllister, K. A. Et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Genet. 8, 345–351 (1994).

Article  CAS  PubMed  Google Scholar 

Johnson, D. W. Et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nature Genet. 13, 189–195 (1996).

Article  CAS  PubMed  Google Scholar 

Gu, Y. Et al. Functional analysis of mutations in the kinase domain of the TGF-β receptor ALK1 reveals different mechanisms for induction of hereditary hemorrhagic telangiectasia. Blood 107, 1951–1954 (2006).

Article  CAS  PubMed  Google Scholar 

Jonker, L. & Arthur, H. M. Endoglin expression in early development is associated with vasculogenesis and angiogenesis. Mech. Dev. 110, 193–196 (2002).

Article  CAS  PubMed  Google Scholar 

Fernandez, L. A. Et al. Blood outgrowth endothelial cells from hereditary haemorrhagic telangiectasia patients reveal abnormalities compatible with vascular lesions. Cardiovasc. Res. 68, 235–248 (2005).

Article  CAS  Google Scholar 

Urness, L. D., Sorensen, L. K. & Li, D. Y. Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nature Genet. 26, 328–331 (2000).

Article  CAS  PubMed  Google Scholar 

Sorensen, L. K., Brooke, B. S., Li, D. Y. & Urness, L. D. Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFβ coreceptor. Dev. Biol. 261, 235–250 (2003).

Article  CAS  PubMed  Google Scholar 

Letarte, M. Et al. Reduced endothelial secretion and plasma levels of transforming growth factor-β1 in patients with hereditary hemorrhagic telangiectasia type 1. Cardiovasc. Res. 68, 155–164 (2005).

Article  CAS  PubMed  Google Scholar 

Sadick, H. Et al. Patients with hereditary hemorrhagic telangiectasia have increased plasma levels of vascular endothelial growth factor and transforming growth factor-β1 as well as high ALK1 tissue expression. Haematologica 90, 818–828 (2005).

CAS  PubMed  Google Scholar 

Scharpfenecker, M. Et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J. Cell Sci. 120, 964–972 (2007).

Article  CAS  PubMed  Google Scholar 

Allinson, K., Carvalho, R. L. C., van den Brink, S., Mummery, C. L. & Arthur, H. M. Generation of a floxed allele of the mouse endoglin gene. Genesis 45, 391–395 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morrell, N. W. Et al. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-β (1) and bone morphogenetic proteins. Circulation 104, 790–795 (2001).

Article  CAS  PubMed  Google Scholar 

Yang, X. Et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ. Res. 96, 1053–1063 (2005).

Article  CAS  PubMed  Google Scholar 

Yu, P. B., Beppu, H., Kawai, N., Li, E. & Bloch, K. D. Bone morphogenetic protein (BMP) type II receptor deletion reveals BMP ligand-specific gain of signaling in pulmonary artery smooth muscle cells. J. Biol. Chem. 280, 24443–24450 (2005).

Article  CAS  PubMed  Google Scholar 

Foletta, V. C. Et al. Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J. Cell Biol. 162, 1089–1098 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

West, J. Et al. Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ. Res. 94, 1109–1114 (2004).

Article  CAS  PubMed  Google Scholar 

Harrison, R. E. Et al. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J. Med. Genet. 40, 865–871 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizuguchi, T. Et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nature Genet. 36, 855–860 (2004).

Article  CAS  PubMed  Google Scholar 

Loeys, B. L. Et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nature Genet. 37, 275–281 (2005).

Article  CAS  PubMed  Google Scholar 

Pannu, H. Et al. Mutations in transforming growth factor-β receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation 112, 513–520 (2005).

Article  CAS  PubMed  Google Scholar 

Topouzis, S. & Majesky, M. W. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-β. Dev. Biol. 178, 430–445 (1996).

Article  CAS  PubMed  Google Scholar 

Waldo, K. L. Et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev. Biol. 281, 78–90 (2005).

Article  CAS  PubMed  Google Scholar 

Neptune, E. R. Et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nature Genet. 33, 407–411 (2003).

Article  CAS  PubMed  Google Scholar 

Habashi, J. P. Et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006). Aortic aneurysm in a mouse model of MFS is shown to be associated with increased TGFβ signalling and can be prevented by TGFβ-neutralizing antibody or the angiotensin II type 1 receptor (AT1) blocker, losartan.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carta, L. Et al. Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J. Biol. Chem. 281, 8016–8023 (2006).

Article  CAS  PubMed  Google Scholar 

Judge, D. P. Et al. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J. Clin. Invest. 114, 172–181 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denton, C. P. Et al. Fibroblast-specific expression of a kinase-deficient type II transforming growth factor β (TGFβ) receptor leads to paradoxical activation of TGFβ signaling pathways with fibrosis in transgenic mice. J. Biol. Chem. 278, 25109–25119 (2003).

Article  CAS  PubMed  Google Scholar 

Wang, W. Et al. Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circ. Res. 98, 1032–1039 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, Y., Poczatek, M. H., Berecek, K. H. & Murphy-Ullrich, J. E. Thrombospondin 1 mediates angiotensin II induction of TGF-β activation by cardiac and renal cells under both high and low glucose conditions. Biochem. Biophys. Res. Commun. 339, 633–641 (2006).

Article  CAS  PubMed  Google Scholar 

Yanagisawa, H. Et al. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 415, 168–171 (2002).

Article  PubMed  Google Scholar 

Nakamura, T. Et al. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415, 171–175 (2002).

Article  CAS  PubMed  Google Scholar 

McLaughlin, P. J. Et al. Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice. Mol. Cell Biol. 26, 1700–1709 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanada, K. Et al. Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice. Circ. Res. 100, 738–746 (2007).

Article  CAS  PubMed  Google Scholar 

Cambien, F. Et al. Polymorphisms of the transforming growth factor-β 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Temoin de l'Infarctus du Myocarde (ECTIM) Study. Hypertension 28, 881–887 (1996).

Article  CAS  PubMed  Google Scholar 

Zacchigna, L. Et al. Emilin1 links TGF-β maturation to blood pressure homeostasis. Cell 124, 929–942 (2006). Mice lacking emilin-1, a Cys-rich secreted glycoprotein that prevents maturation of pro-TGFβ precursor by furin convertases, display elevated blood pressure due to increased TGFβ signalling in the vasculature.

Article  CAS  PubMed  Google Scholar 

August, P. & Suthanthiran, M. Transforming growth factor β signaling, vascular remodeling, and hypertension. N. Engl. J. Med. 354, 2721–2723 (2006).

Article  CAS  PubMed  Google Scholar 

Venkatesha, S. Et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nature Med. 12, 642–649 (2006). Soluble endoglin is shown to lead to dysregulated TGFβ signalling in the vasculature and may act in concert with VEGFR1 to induce severe pre-eclampsia.

Article  CAS  PubMed  Google Scholar 

Cudmore, M. Et al. Negative regulation of soluble Flt-1 and soluble endoglin release by heme oxygenase-1. Circulation 115, 1789–1797 (2007).

Article  CAS  PubMed  Google Scholar 

Lopez-Novoa, J. M. Soluble endoglin is an accurate predictor and a pathogenic molecule in pre-eclampsia. Nephrol. Dial. Transplant. 22, 712–714 (2007).

Article  CAS  PubMed  Google Scholar 

Akhurst, R. J. Large- and small-molecule inhibitors of transforming growth factor-β signaling. Curr. Opin. Investig. Drugs 7, 513–521 (2006).

CAS  PubMed  Google Scholar 

Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

Article  CAS  PubMed  Google Scholar 

Akhurst, R. J. TGF β signaling in health and disease. Nature Genet. 36, 790–792 (2004).

Article  CAS  PubMed  Google Scholar 

Kano, M. R. Et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc. Natl Acad. Sci. USA 104, 3460–3465 (2007). Application of a small-molecule TGFβ type I receptor inhibitor at a low dose decreased pericyte coverage of the endothelium specifically in the tumour neovasculature, and promoted accumulation of anticancer nanocarriers in tumours.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jerkic, M. Et al. Reduced angiogenic responses in adult endoglin heterozygous mice. Cardiovasc. Res. 69, 845–854 (2006).

Article  CAS  PubMed  Google Scholar 

Duff, S. E., Li, C., Garland, J. M. & Kumar, S. CD105 is important for angiogenesis: evidence and potential applications. FASEB J. 17, 984–992 (2003).

Article  CAS  PubMed  Google Scholar 

Tan, G. H. Et al. Combination of low-dose cisplatin and recombinant xenogeneic endoglin as a vaccine induces synergistic antitumor activities. Int. J. Cancer 112, 701–706 (2004).

Article  CAS  PubMed  Google Scholar 

van Laake, L. W. Et al. Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation 114, 2288–2297 (2006).

Article  CAS  PubMed  Google Scholar 

Ramirez, F. & Rifkin, D. B. Cell signaling events: a view from the matrix. Matrix Biol. 22, 101–107 (2003).

Article  CAS  PubMed  Google Scholar 

Coucke, P. J. Et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nature Genet. 38, 452–457 (2006).

Article  CAS  PubMed  Google Scholar 

Gregory, K. E. Et al. The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J. Biol. Chem. 280, 27970–27980 (2005).

Article  CAS  PubMed  Google Scholar 

Arteaga-Solis, E. Et al. Regulation of limb patterning by extracellular microfibrils. J. Cell Biol. 154, 275–281 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choudhary, B. Et al. Cardiovascular malformations with normal smooth muscle differentiation in neural crest-specific type II TGFβ receptor (Tgfbr2) mutant mice. Dev. Biol. 289, 420–429 (2006).

Article  CAS  PubMed  Google Scholar 

Cohn, R. D. Et al. Angiotensin II type 1 receptor blockade attenuates TGF-β-induced failure of muscle regeneration in multiple myopathic states. Nature Med. 13, 204–210 (2007).

Article  CAS  PubMed  Google Scholar 

Kamei, M. Et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442, 453–456 (2006).

Article  CAS  PubMed  Google Scholar 

Barbara, N. P., Wrana, J. L. & Letarte, M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-β superfamily. J. Biol. Chem. 274, 584–594 (1999).

Article  CAS  PubMed  Google Scholar 

George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. & Hynes, R. O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091 (1993).

CAS  PubMed  Google Scholar 

Lawler, J. Et al. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J. Clin. Invest. 101, 982–992 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, X. Z. Et al. Inactivation of the integrin β 6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J. Cell Biol. 133, 921–928 (1996).

Article  CAS  PubMed  Google Scholar 

Stenvers, K. L. Et al. Heart and liver defects and reduced transforming growth factor β2 sensitivity in transforming growth factor β type III receptor-deficient embryos. Mol. Cell Biol. 23, 4371–4385 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srinivasan, S. Et al. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum. Mol. Genet. 12, 473–482 (2003).

Article  CAS  PubMed  Google Scholar 

Larsson, J. Et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J. 20, 1663–1673 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beppu, H. Et al. BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L1241–L1247 (2004).

Article  CAS  PubMed  Google Scholar 

Lane, K. B. Et al. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nature Genet. 26, 81–84 (2000).

Article  CAS  PubMed  Google Scholar 

Gallione, C. J. Et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363, 852–859 (2004).

Article  CAS  PubMed  Google Scholar 

Loeys, B.L. Et al. Aneurysm syndromes caused by mutations in the TGF-β receptor. N. Engl. J. Med. 355, 788–798 (2006). Mutations in either TGFBR1 or TGFBR2 are shown to predispose patients to aggressive and widespread vascular disease.

Article  CAS  PubMed  Google Scholar 

Todorovic, V. Et al. Long form of latent TGF-β binding protein 1 (Ltbp1L) is essential for cardiac outflow tract septation and remodeling. Development (in the press).


Genetic Mutation

So, how do mutations occur? The answer to this question is closely linked to the molecular details of how both DNA and the entire genome are organized. The smallest mutations are point mutations, in which only a single base pair is changed into another base pair. Yet another type of mutation is the nonsynonymous mutation, in which an amino acid sequence is changed. Such mutations lead to either the production of a different protein or the premature termination of a protein.

As opposed to nonsynonymous mutations, synonymous mutations do not change an amino acid sequence, although they occur, by definition, only in sequences that code for amino acids. Synonymous mutations exist because many amino acids are encoded by multiple codons. Base pairs can also have diverse regulating properties if they are located in introns, intergenic regions, or even within the coding sequence of genes. For some historic reasons, all of these groups are often subsumed with synonymous mutations under the label "silent" mutations. Depending on their function, such silent mutations can be anything from truly silent to extraordinarily important, the latter implying that working sequences are kept constant by purifying selection. This is the most likely explanation for the existence of ultraconserved noncoding elements that have survived for more than 100 million years without substantial change, as found by comparing the genomes of several vertebrates (Sandelin et al., 2004).

Mutations may also take the form of insertions or deletions, which are together known as indels. Indels can have a wide variety of lengths. At the short end of the spectrum, indels of one or two base pairs within coding sequences have the greatest effect, because they will inevitably cause a frameshift (only the addition of one or more three-base-pair codons will keep a protein approximately intact). At the intermediate level, indels can affect parts of a gene or whole groups of genes. At the largest level, whole chromosomes or even whole copies of the genome can be affected by insertions or deletions, although such mutations are usually no longer subsumed under the label indel. At this high level, it is also possible to invert or translocate entire sections of a chromosome, and chromosomes can even fuse or break apart. If a large number of genes are lost as a result of one of these processes, then the consequences are usually very harmful. Of course, different genetic systems react differently to such events.

Finally, still other sources of mutations are the many different types of transposable elements, which are small entities of DNA that possess a mechanism that permits them to move around within the genome. Some of these elements copy and paste themselves into new locations, while others use a cut-and-paste method. Such movements can disrupt existing gene functions (by insertion in the middle of another gene), activate dormant gene functions (by perfect excision from a gene that was switched off by an earlier insertion), or occasionally lead to the production of new genes (by pasting material from different genes together).






Comments

Popular posts from this blog

Epoprostenol Via High-Flow Nasal Cannula Improves Severe Hypoxemia in PH - Pulmonology Advisor

Novitium's Generic Sildenafil for PAH Treatment Approved by FDA - Pulmonary Hypertension News

Analysis: Large pharma companies do little new drug innovation - STAT